Multi-scale Simulation Including Chemical Reactivity in Materials Behavior Through Integrated Computational Hierarchies

MULTI-scale, MULTI-pass SIMULATIONS FROM MOLECULES TO MATERIALS

U. Florida U. Arizona MIT Wash. State
R. Bartlett J. Simmons S. Yip T. Dickinson
H-P. Cheng K. Jackson
P. Deymier
F. Harris R. Ochoa (College of N.J.)
S. Trickey
M. Zerner (deceased 2000)
S. Sinnott
PARTICIPATING UNIVERSITIES

University of Florida

University of Arizona

Massachusetts Institute of Technology

Washington State University
PARTICIPATING FACULTY

University of Florida
- R. Bartlett (Chemistry)
- H-P. Cheng (Physics)
- J. Dufty (Physics)
- F. Harris (Chemistry)
- S. Trickey (Physics)
- S. Sinnott (Materials Scientist)
- M. Zerner (Deceased 2000)

University of Arizona
- J. Simmons (Materials Scientist)
- K. Jackson (Materials Scientist)
- P. Deymier (Materials Scientist)
- R. Ochoa (Materials Scientist)

MIT
- S. Yip (Nuclear Engineer)

Washington State University
- T. Dickinson (Materials Scientist)

http://www.qtp.ufl.edu/kdi
PARTICIPATING INDIVIDUALS

Undergraduate Students: 14

Graduate Students: 14

Faculty from Undergrad Institutions: 2

Funded Senior Investigators:

UF: 5 MIT: 1
UA: 2 WSU: 1

http://www.qtp.ufl.edu/kdi
Motorola Inc: Collaborative Research
IBM: In-kind Support
Hypercube: Collaborative Research
ACES QC: Collaborative Research
The College of New Jersey: Personnel Exchanges
FUNDP, Namur, Belgium: Collaborative Research; Personnel Exchanges

http://www.qtp.ufl.edu/kdi
Predictive simulation of chemo-mechanical processes in real materials

- Predictive theory: computationally feasible; 1st principles; reliable complement to experiment.

- Chemo-mechanical: chemistry ⇔ stress (reactivity, bond breaking, excited states, solvents, fracture, surfaces …)
Reactive solution + abrasive particles
Laser Mirror Photodetector Amplifier Controller Sample tip Cantilever

Atomic Force Microscopy

Si$_3$N$_4$ polycrystalline tip

Contact non-contact tapping

Tip used for applying stress AND probing results
White square was scanned 3 times at $F_N = 270$ nN. High F_N scanning has no detectable effect in the absence of “corrosive” fluid.
SFM Image of a Typical Etch Pit on Cleavage Surface of Calcite

3 Å steps

“Fast Steps”

“Slow Steps”

5 nm

1.7 µm

“Fast Steps”

“Slow Steps”

obtuse

acute

UFlorida NSF KDI
Predictive + Chemically Realistic = DEMANDING

- Multi-scale with

 Real Materials (many constituents, conformations, environments) and Real Chemistry

 Complex Phenomena

⇒

- Chemical Detail and Scale Parity Required
- Computational Resource Requirements
- Subtleties of Decomposition (regions, methods)
Challenge - Most simulations of a chemo-mechanical process (e.g. Fracture) involve a priori knowledge of the location and scale size of the quantum region.

Approach: multi-pass strategy. Use fast, realistic classical MD to identify likely quantum regions; then multi-scale with highly realistic, fast approximate QM

- Better QM approx. than tight-binding
- Potentials parameterized to embed QM optimally
- Algorithms to detect incipient QM region(s)
- Linkages between regions
- Validate with method/code suite ⇒ method linking
Some IMPLICATIONS

- Hierarchy of Regions ⇒ Re-examine Hierarchy of Methods
- Re-think/re-examine all Elements of Multi-scale Simulation

 Incompletely examined assumptions?
 Opportunities from other developments?
 Unnoticed threads in the literature?

UForida NSF KDI
MAJOR TASKS

- Fast approx. QM well beyond Tight-binding
- Classical potentials to embed the QM
- Systematic location/characterization of regions & boundaries (not “by hand”)
- Cross-boundary information transfer characterized, codified
- Appropriate software (acquired, developed, integrated, front-ended, validated, …)
- Stay focused: physical-science-driven (scientific computation, not pretend computer science)
User Interface -

Multi-Scale Multi-Pass Simulation from Molecules to Materials

Choose a route through the methods below.

<table>
<thead>
<tr>
<th>FORCE GENERATION</th>
<th></th>
<th>MOLECULAR DYNAMICS</th>
<th></th>
<th>CONTINUUM MODELS</th>
<th></th>
<th>KINETIC MONTE-CARLO (Jackson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Mechanics</td>
<td>Adaptive Potentials</td>
<td>Classical Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Hamiltonian</td>
<td>DFT</td>
<td>Streitz-Mintmire</td>
<td>BKS/TTAM</td>
<td>Sinott MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheng BO MD</td>
<td>Harris MD</td>
<td>Yip MD</td>
<td>DL_POLY</td>
<td>Sinott MD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>SCRF</td>
<td>FE 2D</td>
<td>COSMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Force Source: Approximate QM via Transfer Hamiltonian

UFlorida NSF KDI
State of the art in ab initio quantum chemistry is Coupled-Cluster theory:
\[
\exp(-T) H \exp(T) = \hat{H}_{cc}
\]
\[
\hat{H}_{cc} |0\uparrow = E_0 |0\uparrow
\]
\(E_0\) is the exact correlated energy.

Equations for the coefficients in \(T\), i.e. \(t_{ia}\), \(t_{ijab}\), etc., from
\[
\langle m \rangle |0\uparrow = 0
\]
with \(\langle m \rangle = \) single, double, triple, etc., excitations w/r to \(|0\uparrow\)

\[
\nabla (R) E(R) = \nabla \langle 0 |\hat{H}_{cc} |0\uparrow \rightarrow \text{exact forces on the nuclei.}
\]
“ab initio” - a Latin phrase meaning “expensive”

Our approach: train a simple Hamiltonian to reproduce behavior of \hat{H}_{cc}, hence transfer that behavior to low-cost QM

Transfer the *dynamics* generated by \hat{H}_{cc} - Parameterize \hat{H}_T such that

$$\nabla(R)E(R) = \nabla(R) \langle 0_T | \hat{H}_T | 0_T \rangle$$

$$= \nabla(R) \langle 0 | \hat{H}_{cc} | 0 \rangle$$

Use NDDO form for \hat{H}_T (simplified HF)
PYROSILICIC ACID
Comparison of forces for pyrosilicic acid dissociating into neutral fragments.
Coupled-cluster forces can be encoded reliably

TH is a far simpler operator than CC ⇒ rapid determination of forces for ~500-1000 atoms

Unlike TB, TH is determined fully self-consistently

Unlike DFT, applicable to ~100 atoms/processor, TH mimics CC results, which are superior in bond-breaking and transition state regions of molecules

TH approach is applicable to any and all systems once a suitable reference set of CC cluster results is available.
CC results obtainable only for relatively small clusters ~ 10-15 atoms.

CC must be on representative clusters for each system.

Objective: CC parameters essentially independent of the cluster.
Multi-Scale Multi-Pass Simulation from Molecules to Materials

Choose a route through the methods below.

FORCE GENERATION
- Quantum Mechanics
 - Transfer Hamiltonian
 - DFT
- Adaptive Potentials
 - Streitz-Mintmire
- Classical Mechanics
 - BKS/TTAM
 - Brenner

MOLECULAR DYNAMICS
- Cheng BO MD
- Harris MD
- Yip MD
- DL_POLY
- Snott MD

CONTINUUM MODELS
- None
- SCRF
- FE 2D
- COSMO

KINETIC MONTE-CARLO (Jackson)
- No
- Yes

Embedding Potential: QM-adapted, as-published, etc.
Typical previous work: fit
\[V_{ij} = Q_i \frac{Q_j}{R_{ij}} + \alpha_{ij} \exp(-\beta_{ij} R_{ij}) - \gamma_{ij}/R_{ij}^6 \]
to energetics from a small molecule plus experimental structure and properties of crystal (e.g. H$_4$SiO$_4$ & α-quartz)

Our approach: Fit the potential to the QM that will be embedded (different parameters for DFT vs. \hat{H}_T embedding). Emphasize dynamics over energetics.

Fitted parameters are very different from published.
Unexpected results along the way

- Calculated Si-O-Si angle in $\text{H}_6\text{Si}_2\text{O}_7$ is 180° (multiple methods); potential-fitting literature says bent
- Equilibrium O-Si-O angle in H_4SiO_4 not tetrahedral; two popular potentials are fit to tetrahedral clusters
- α-quartz does not have a double minimum w/r cell volume in DFT and Gaussian basis (brittle, not ductile)
CLASSICAL POTENTIAL FITTING: H_4SiO_4
CLASSICAL POTENTIAL FITTING: α Quartz

SiO$_2$ Nanorod Tensile Fracture - Pair Potential From alpha-Quartz DFT

- Published BKS
- BKS-HL
- BKS-PBE
- Published TTAM
- TTAM-HL
- TTAM-PBE

Stress [GPa]

Strain

UFroida NSF KDI
Other Ongoing Work: Adaptive potentials (Rappé-Goddard, Streitz-Mintmire, et al.)

- better, because they allow for charge transfer and bond breaking,
- but computationally “pricey”

⇒ Parameterize reactivity indices (electronegativity, softness) to embed QM
⇒ Develop faster algorithms
User Interface -

Multi-Scale Multi-Pass Simulation from Molecules to Materials

Choose a route through the methods below.

FORCE GENERATION
- Quantum Mechanics
 - Transfer Hamiltonian
 - DFT
- Adaptive Potentials
 - Streitz-Mintmire
- Classical Mechanics
 - BKS/TTAM
 - Brenner

MOLECULAR DYNAMICS
- Cheng BO MD
- Harris MD
- Yip MD
- DL_POLY
- Sinott MD

CONTINUUM MODELS
- None
- SCRF
- FE 2D
- COSMO

KINETIC MONTE-CARLO (Jackson)
- No
- Yes

Links between regions/regimes

UFlorida NSF KDI
Classical Mechanics

Quantum Mechanics

Continuum Mechanics

Pseudoatoms
• Attach H atoms to broken covalent bonds to satisfy the valence structure.
• These link H atoms do not interact with CM atoms, but terminate QM correctly. Make interface “transparent”.
QM --- QM : DFT
CM --- CM : BKS potential
QM --- CM : BKS potential

UFlorida NSF KDI
LINK ATOMS - OPTIMIZED GEOMETRIES

UForida NSF KDI
The force acting on Si (1) as a function of Si (1) – O (b) bond length
The force acting on O (b) as a function of O (b) – Si (2) bond length
The force acting on Si (2) as a function of O (b) – Si (2) bond length
Challenge – Molecular Dynamics frequently does not permit long enough time scales to observe phenomena of interest. Inclusion of realistic QM worsens the problem.

- Approach 1: Hybrid MD
- Approach 2: Kinetic Monte Carlo
- Approach 3: Finite Difference Time Domain
Objective – Keep the classical Molecular Dynamics on a QM leash.

Our Approach – Do good QM forces (in QM region) only every N steps. Calculate and store differences. Run classical MD in that region for next (N-1) steps with forces corrected by those differences. Repeat.

Benefit: one → several orders of magnitude speedup over the time for QM at every step.
KINETIC MONTE CARLO -

- *KMC* probabilistically implements events on a small scale to show a large scale morphology.

- **Objective** – Move aggressively but reliably to important parts of phase space.

- **Our Approach** – *Extract probabilities from MD simulations (particularly ensemble MD).*

- **Benefit:** multiple orders of magnitude speedup relative to classical MD.

- **Requirements:**
 - Setting up a lattice
 - Bookkeeping, bookkeeping, bookkeeping
$V__ = V_0 e^{-n(\phi - E(n,r))}$

- Screw dislocation

 $E(n,r) = \begin{cases} \frac{E_n}{r} & 1 < n < Z \\ 0 & 1 \geq n \geq Z \end{cases}$

- Unstressed bond strength - ϕ
- Geometric energy - E_n
φ controls cross-section and roughness

(a) φ = 1 $E_n = 0.5$

(b) φ = 5 $E_n = 0.5$

(c) φ = 7 $E_n = 0.5$

(d) φ = 9 $E_n = 0.6$
Kinetic Monte Carlo – Etch Pit Stress Effects

- E_n controls aspect ratio of the pit
- (a) $E_n = 0.2$
- (b) $E_n = 0.3$
- (c) $E_n = 0.5$
- (d) $E_n = 0.7$
 \[\phi = 7.0\]
Finite Difference Time Domain method: expand time scale between MD and FE
Multi-Scale Multi-Pass Simulation from Molecules to Materials

Choose a route through the methods below.

<table>
<thead>
<tr>
<th>FORCE GENERATION</th>
<th>MOLECULAR DYNAMICS</th>
<th>CONTINUUM MODELS</th>
<th>KINETIC MONTE-CARLO (Jackson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Hamiltonian</td>
<td>DFT</td>
<td>Streitz-Mintmire</td>
<td>BKS/TTAM</td>
</tr>
<tr>
<td>Adaptive Potentials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLECULAR DYNAMICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheng BO MD</td>
<td>Harris MD</td>
<td>Yip MD</td>
<td>DL_POLY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sinott MD</td>
</tr>
<tr>
<td>CONTINUUM MODELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>SCRF</td>
<td>FE 2D</td>
<td>COSMO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KINETIC MONTE-CARLO (Jackson)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Linked Laboratory Tool Suite

UForida NSF KDI
CHALLENGES and APPROACHES -

- Challenge – Multi-scale software rigidly linked or used unlinked with much “interface massaging”. Greatly limits the flexibility of application, and makes it difficult to obtain essential comparisons that establish predictive accuracy.

- Our Approach: Linked Laboratory. Flexible, user-level linking of mostly autonomous modules into one framework that allows choice among
 - classical, DFT, and transfer Hamiltonian forces
 - several MD programs tailored to various classes of application
 - continuum methods (FE, Self-consistent Reaction Field)
SOFTWARE APPROACH

➢ Research-problem-driven: Focuses on enabling the researcher to link the needed tools

➢ Open-source as much as possible

➢ Uses the concepts but not the high-investment stringency of highly structured, object-oriented methodology

➢ Therefore does not require large, high-priority investment in software engineering

➢ Tech-transfer - Should lay the groundwork for highly-structured commercial packages (not our role).

UForida NSF KDI
Multi-Scale Multi-Pass Simulation from Molecules to Materials

Choose a route through the methods below.

<table>
<thead>
<tr>
<th>FORCE GENERATION</th>
<th></th>
<th></th>
<th>Classical Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Mechanics</td>
<td>Transfer Hamiltonian</td>
<td>DFT</td>
<td>Streitz-Mintmire</td>
</tr>
<tr>
<td>MOLECULAR DYNAMICS</td>
<td>Cheng BO MD</td>
<td>Harris MD</td>
<td>Yip MD</td>
</tr>
<tr>
<td>CONTINUUM MODELS</td>
<td>None</td>
<td>SCRF</td>
<td>FE 2D</td>
</tr>
<tr>
<td>KINETIC MONTE-CARLO (Jackson)</td>
<td>No</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
CONCLUSION -

- Re-examination ⇒ creation and development of needed scientific components and supporting software

- Additional linkages under construction (e.g. hybrid MD, adaptive potentials, KMC)

- Further work needed (e.g. good models for calculated inputs to KMC, adaptation/incorporation of progress in parallelization, systematic identification of QM region, methodology for selecting reference suite of molecules, faster adaptive potentials ….)

- Initial stages of some proof-of-approach simulations on realistic chemo-mechanical problems underway ….

http://www.qtp.ufl.edu/kdi
SILICA & WATER (HYDROLYTIC WEAKENING) -

- X waters interacting with Y SiO$_2$s
- Study proton transfer and bonding rearrangement
- Direct Born-Oppenheimer MD for molecular study
- MD embedded (link atom) BO-MD for silica surface

http://www.qtp.ufl.edu/kdi
SILICA & WATER (HYDROLYTIC WEAKENING)
SiO$_2$(H$_2$O)$_5$ -

Hydration energy = 2.13 eV
SILICA & WATER (HYDROLYTIC WEAKENING)

SiO$_2$(H$_2$O)$_6$ -

Hydration energy = 0.44 eV

http://www.qtp.ufl.edu/kdi
NANOROD FRACTURE– TTAM vs. Transfer Hamiltonian